Decay profile for the chemotactic model with advection and quadratic degradation in bounded domains

Myowin Htwe, Yifu Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

This paper is concerned with a chemotactic system modeling the coral broadcast spawning given by ut+U⋅∇u=Δu−χ∇⋅(u∇v)−μu2,vt+U⋅∇v=Δv−v+u in a bounded domain Ω⊂Rn(n≥1)under Neumann boundary conditions. We provide a rather simpler proof of the non-trivial bounded classical solution on the decay profile. In addition, we also obtain the optimal decay rate of ∇v(⋅,t)in Lp(Ω)as t→∞.

Original languageEnglish
Pages (from-to)36-40
Number of pages5
JournalApplied Mathematics Letters
Volume98
DOIs
Publication statusPublished - Dec 2019

Keywords

  • Asymptotic behavior
  • Chemotaxis
  • Decay estimate
  • Fertilization

Fingerprint

Dive into the research topics of 'Decay profile for the chemotactic model with advection and quadratic degradation in bounded domains'. Together they form a unique fingerprint.

Cite this