TY - JOUR
T1 - Convolution Neural Network with Coordinate Attention for Real-Time Wound Segmentation and Automatic Wound Assessment
AU - Sun, Yi
AU - Lou, Wenzhong
AU - Ma, Wenlong
AU - Zhao, Fei
AU - Su, Zilong
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/5
Y1 - 2023/5
N2 - Background: Wound treatment in emergency care requires the rapid assessment of wound size by medical staff. Limited medical resources and the empirical assessment of wounds can delay the treatment of patients, and manual contact measurement methods are often inaccurate and susceptible to wound infection. This study aimed to prepare an Automatic Wound Segmentation Assessment (AWSA) framework for real-time wound segmentation and automatic wound region estimation. Methods: This method comprised a short-term dense concatenate classification network (STDC-Net) as the backbone, realizing a segmentation accuracy–prediction speed trade-off. A coordinated attention mechanism was introduced to further improve the network segmentation performance. A functional relationship model between prior graphics pixels and shooting heights was constructed to achieve wound area measurement. Finally, extensive experiments on two types of wound datasets were conducted. Results: The experimental results showed that real-time AWSA outperformed state-of-the-art methods such as mAP, mIoU, recall, and dice score. The AUC value, which reflected the comprehensive segmentation ability, also reached the highest level of about 99.5%. The FPS values of our proposed segmentation method in the two datasets were 100.08 and 102.11, respectively, which were about 42% higher than those of the second-ranked method, reflecting better real-time performance. Moreover, real-time AWSA could automatically estimate the wound area in square centimeters with a relative error of only about 3.1%. Conclusion: The real-time AWSA method used the STDC-Net classification network as its backbone and improved the network processing speed while accurately segmenting the wound, realizing a segmentation accuracy–prediction speed trade-off.
AB - Background: Wound treatment in emergency care requires the rapid assessment of wound size by medical staff. Limited medical resources and the empirical assessment of wounds can delay the treatment of patients, and manual contact measurement methods are often inaccurate and susceptible to wound infection. This study aimed to prepare an Automatic Wound Segmentation Assessment (AWSA) framework for real-time wound segmentation and automatic wound region estimation. Methods: This method comprised a short-term dense concatenate classification network (STDC-Net) as the backbone, realizing a segmentation accuracy–prediction speed trade-off. A coordinated attention mechanism was introduced to further improve the network segmentation performance. A functional relationship model between prior graphics pixels and shooting heights was constructed to achieve wound area measurement. Finally, extensive experiments on two types of wound datasets were conducted. Results: The experimental results showed that real-time AWSA outperformed state-of-the-art methods such as mAP, mIoU, recall, and dice score. The AUC value, which reflected the comprehensive segmentation ability, also reached the highest level of about 99.5%. The FPS values of our proposed segmentation method in the two datasets were 100.08 and 102.11, respectively, which were about 42% higher than those of the second-ranked method, reflecting better real-time performance. Moreover, real-time AWSA could automatically estimate the wound area in square centimeters with a relative error of only about 3.1%. Conclusion: The real-time AWSA method used the STDC-Net classification network as its backbone and improved the network processing speed while accurately segmenting the wound, realizing a segmentation accuracy–prediction speed trade-off.
KW - area assessment
KW - convolutional neural networks
KW - coordinate attention
KW - wound segmentation
UR - http://www.scopus.com/inward/record.url?scp=85159124354&partnerID=8YFLogxK
U2 - 10.3390/healthcare11091205
DO - 10.3390/healthcare11091205
M3 - Article
AN - SCOPUS:85159124354
SN - 2227-9032
VL - 11
JO - Healthcare (Switzerland)
JF - Healthcare (Switzerland)
IS - 9
M1 - 1205
ER -