Category-aware next point-of-interest recommendation via listwise Bayesian personalized ranking

Jing He, Xin Li*, Lejian Liao

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

94 Citations (Scopus)

Abstract

Next Point-of-Interest (POI) recommendation has become an important task for location-based social networks (LBSNs). However, previous efforts suffer from the high computational complexity, besides the transition pattern between POIs has not been well studied. In this paper, we proposed a twofold approach for next POI recommendation. First, the preferred next category is predicted by using a third-rank tensor optimized by a Listwise Bayesian Personalized Ranking (LBPR) approach. Specifically we introduce two functions, namely Plackett-Luce model and cross entropy, to generate the likelihood of a ranking list for posterior computation. Then POI candidates filtered by the predicated category are ranked based on the spatial influence and category ranking influence. The experiments on two real-world datasets demonstrate the significant improvements of our methods over several state-ofthe-art methods.

Original languageEnglish
Title of host publication26th International Joint Conference on Artificial Intelligence, IJCAI 2017
EditorsCarles Sierra
PublisherInternational Joint Conferences on Artificial Intelligence
Pages1837-1843
Number of pages7
ISBN (Electronic)9780999241103
DOIs
Publication statusPublished - 2017
Event26th International Joint Conference on Artificial Intelligence, IJCAI 2017 - Melbourne, Australia
Duration: 19 Aug 201725 Aug 2017

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume0
ISSN (Print)1045-0823

Conference

Conference26th International Joint Conference on Artificial Intelligence, IJCAI 2017
Country/TerritoryAustralia
CityMelbourne
Period19/08/1725/08/17

Fingerprint

Dive into the research topics of 'Category-aware next point-of-interest recommendation via listwise Bayesian personalized ranking'. Together they form a unique fingerprint.

Cite this