Blind Hyperspectral Unmixing using Dual Branch Deep Autoencoder with Orthogonal Sparse Prior

Zeyang Dou, Kun Gao, Xiaodian Zhang, Hong Wang, Junwei Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Citations (Scopus)

Abstract

Blind hyperspectral unmixing has become an important task for hyperspectral applications. In this paper, we propose a dual branch autoencoder with a novel sparse prior to simultaneously extract endmembers and abundances from the raw HSI. The dual branch structure extends the linear mixing model by only modeling linear mixtures of the endmembers and treating the bilinear interactions as error. In this way, the proposed model doesn't require the assumptions of explicit forms of bilinear interactions. The proposed sparse prior, named as orthogonal sparse prior, is based on the key observation that the abundance vector of one pixel is very sparse, there are often no more than two non-zero elements. Different from the conventional norm-based sparse prior which assumes the abundance maps are independent, the orthogonal sparse prior explores the orthogonality between the abundance maps. Extensive experiments on two real datasets show that the proposed method significantly and consistently outperforms the compared state-of-the-art methods, with up to 50% improvements.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2428-2432
Number of pages5
ISBN (Electronic)9781509066315
DOIs
Publication statusPublished - May 2020
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: 4 May 20208 May 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period4/05/208/05/20

Keywords

  • Autoencoder
  • Hyperspectral unmixing
  • Sparse prior

Fingerprint

Dive into the research topics of 'Blind Hyperspectral Unmixing using Dual Branch Deep Autoencoder with Orthogonal Sparse Prior'. Together they form a unique fingerprint.

Cite this