Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions

Muhammad Tahir, Nasir Mahmood, Xiaoxue Zhang, Tariq Mahmood, Faheem K. Butt, Imran Aslam, M. Tanveer, Faryal Idrees, Syed Khalid, Imran Shakir, Yiming Yan, Jijun Zou, Chuanbao Cao*, Yanglong Hou

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

129 Citations (Scopus)

Abstract

Catalysts for oxygen and hydrogen evolution reactions (OER/HER) are at the heart of renewable green energy sources such as water splitting. Although incredible efforts have been made to develop efficient catalysts for OER and HER, great challenges still remain in the development of bifunctional catalysts. Here, we report a novel hybrid of Co3O4 embedded in tubular nanostructures of graphitic carbon nitride (GCN) and synthesized through a facile, large-scale chemical method at low temperature. Strong synergistic effects between Co3O4 and GCN resulted in excellent performance as a bifunctional catalyst for OER and HER. The high surface area, unique tubular nanostructure, and composition of the hybrid made all redox sites easily available for catalysis and provided faster ionic and electronic conduction. The Co3O4@GCN tubular nanostructured (TNS) hybrid exhibited the lowest overpotential (0.12 V) and excellent current density (147 mA/cm2) in OER, better than benchmarks IrO2 and RuO2, and with superior durability in alkaline media. Furthermore, the Co3O4@GCN TNS hybrid demonstrated excellent performance in HER, with a much lower onset and overpotential, and a stable current density. It is expected that the Co3O4@GCN TNS hybrid developed in this study will be an attractive alternative to noble metals catalysts in large scale water splitting and fuel cells. [Figure not available: see fulltext.]

Original languageEnglish
Pages (from-to)3725-3736
Number of pages12
JournalNano Research
Volume8
Issue number11
DOIs
Publication statusPublished - 1 Oct 2015

Keywords

  • bifunctional catalyst
  • carbon nitride
  • cobalt oxide
  • hydrogen evolution reaction
  • oxygen evolution reaction

Fingerprint

Dive into the research topics of 'Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions'. Together they form a unique fingerprint.

Cite this