Autonomous object harvesting using synchronized optoelectronic microrobots

Christopher Bendkowski, Laurent Mennillo, Tao Xu, Mohamed Elsayed, Filip Stojic, Harrison Edwards, Shuailong Zhang, Cindi Morshead, Vijay Pawar, Aaron R. Wheeler, Danail Stoyanov, Michael Shaw

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Optoelectronic tweezer-driven microrobots (OETdMs) are a versatile micromanipulation technology based on the application of light induced dielectrophoresis to move small dielectric structures (microrobots) across a photoconductive substrate. The microrobots in turn can be used to exert forces on secondary objects and carry out a wide range of micromanipulation operations, including collecting, transporting and depositing microscopic cargos. In contrast to alternative (direct) micromanipulation techniques, OETdMs are relatively gentle, making them particularly well suited to interacting with sensitive objects such as biological cells. However, at present such systems are used exclusively under manual control by a human operator. This limits the capacity for simultaneous control of multiple microrobots, reducing both experimental throughput and the possibility of cooperative multi-robot operations. In this article, we describe an approach to automated targeting and path planning to enable open-loop control of multiple microrobots. We demonstrate the performance of the method in practice, using microrobots to simultaneously collect, transport and deposit silica microspheres. Using computational simulations based on real microscopic image data, we investigate the capacity of microrobots to collect target cells from within a dissociated tissue culture. Our results indicate the feasibility of using OETdMs to autonomously carry out micromanipulation tasks within complex, unstructured environments.

Original languageEnglish
Title of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7498-7504
Number of pages7
ISBN (Electronic)9781665417143
DOIs
Publication statusPublished - 2021
Externally publishedYes
Event2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021 - Prague, Czech Republic
Duration: 27 Sept 20211 Oct 2021

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
Country/TerritoryCzech Republic
CityPrague
Period27/09/211/10/21

Keywords

  • Biological Cell Manipulation
  • Computer Vision for Automation
  • Micro/Nano Robots
  • Path Planning for Multiple Mobile Robots or Agents

Fingerprint

Dive into the research topics of 'Autonomous object harvesting using synchronized optoelectronic microrobots'. Together they form a unique fingerprint.

Cite this