Abstract
We are concerned with the Keller–Segel–Navier–Stokes system {ρt+u·∇ρ=Δρ-∇·(ρS(x,ρ,c)∇c)-ρm,(x,t)∈Ω×(0,T),mt+u·∇m=Δm-ρm,(x,t)∈Ω×(0,T),ct+u·∇c=Δc-c+m,(x,t)∈Ω×(0,T),ut+(u·∇)u=Δu-∇P+(ρ+m)∇ϕ,∇·u=0,(x,t)∈Ω×(0,T)subject to the boundary condition (∇ ρ- ρS(x, ρ, c) ∇ c) · ν= ∇ m· ν= ∇ c· ν= 0 , u= 0 in a bounded smooth domain Ω⊂ R3. It is shown that this problem admits a global classical solution with exponential decay properties when S∈C2(Ω¯×[0,∞)2)3×3 satisfies | S(x, ρ, c) | ≤ CS for some CS> 0 , and the initial data satisfy certain smallness conditions.
Original language | English |
---|---|
Article number | 90 |
Journal | Zeitschrift fur Angewandte Mathematik und Physik |
Volume | 71 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Jun 2020 |
Keywords
- Decay estimates
- Keller–Segel system
- Navier–Stokes
- Tensor-valued sensitivity
Fingerprint
Dive into the research topics of 'Asymptotic behavior of classical solutions of a three-dimensional Keller–Segel–Navier–Stokes system modeling coral fertilization'. Together they form a unique fingerprint.Cite this
Htwe, M., Pang, P. Y. H., & Wang, Y. (2020). Asymptotic behavior of classical solutions of a three-dimensional Keller–Segel–Navier–Stokes system modeling coral fertilization. Zeitschrift fur Angewandte Mathematik und Physik, 71(3), Article 90. https://doi.org/10.1007/s00033-020-01310-y