An Active Landing Recovery Method for Quadrotor UAV: Localization, Tracking and Buffering Landing

Yongkang Xu*, Zhihua Chen*, Shoukun Wang*, Junzheng Wang*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Citations (Scopus)

Abstract

This paper proposes a principle of fully autonomous ground mobile landing recovery of Unmanned Aerial Vehicles (UAV) for the problems of relatively fixed landing point, passive recovery, poor flexibility, and environmental adaptability, which mainly includes localization, landing point tracking, and buffering landing for quadrotor UAV. Firstly, aiming at the problem that it is difficult to accurately obtain the position of a UAV in dynamic mobile landing recovery, a target location method based on Asynchronous Multisensor Information Fusion(AMIF) and servo turntable focus tracking is proposed. Secondly, to achieve fast and high-precision tracking of UAVs, a tracking control strategy of an independently driven landing recovery system and a Stewart six-degree of freedom platform is proposed. Then, to solve the problems of large impact force and center of gravity instability in the landing process of UAV, a stationarity control algorithm based on model prediction and a compliance control algorithm based on adaptive variable impedance are designed to achieve active compliance control while adjusting the position and attitude of the receiving surface in real-time. Finally, a quadrotor unmanned landing and recovery experimental platform is built to verify the feasibility of the ground mobile landing and recovery strategy proposed in this paper and the effectiveness of the control algorithm.

Original languageEnglish
Title of host publicationIFAC-PapersOnLine
EditorsHideaki Ishii, Yoshio Ebihara, Jun-ichi Imura, Masaki Yamakita
PublisherElsevier B.V.
Pages3366-3372
Number of pages7
Edition2
ISBN (Electronic)9781713872344
DOIs
Publication statusPublished - 1 Jul 2023
Event22nd IFAC World Congress - Yokohama, Japan
Duration: 9 Jul 202314 Jul 2023

Publication series

NameIFAC-PapersOnLine
Number2
Volume56
ISSN (Electronic)2405-8963

Conference

Conference22nd IFAC World Congress
Country/TerritoryJapan
CityYokohama
Period9/07/2314/07/23

Keywords

  • Buffering landing
  • Falling point tracking
  • Mobile Autonomous recovery
  • Quadrotor UAV
  • Target localization

Fingerprint

Dive into the research topics of 'An Active Landing Recovery Method for Quadrotor UAV: Localization, Tracking and Buffering Landing'. Together they form a unique fingerprint.

Cite this