Abstract
It is experimentally challenging to generate and detect nano-sized neutral metal oxide clusters with high-resolution mass spectrometry. Herein, a vacuum ultraviolet (VUV) photoionization time-of-flight (TOF) mass spectrometer based instrument has been home-made to study the generation, distribution, and reaction of nano-sized neutral metal oxide clusters. The VUV laser generation system has been designed to produce four 118 nm laser beams to ionize neutral metal oxide clusters in a supersonic beam with the “head-to-head” style. The TOF mass spectrometer is capable of analyzing nano-sized neutral metal oxide clusters with high mass resolution. Nano-sized neutral manganese oxide clusters MnmOn (m = 5–58; n = 8–82) have been generated and the mass resolution (m/Δm) for Mn41O59 (∼1.3 nm) is about 7270. The association products MnmOnC2H4 can be observed for the reaction of neutral manganese oxide clusters with C2H4. The rate constants for the reaction of (Mn2O3)N (N = 2–22) with C2H4 have been experimentally determined.
Original language | English |
---|---|
Pages (from-to) | 98-104 |
Number of pages | 7 |
Journal | International Journal of Mass Spectrometry |
Volume | 422 |
DOIs | |
Publication status | Published - Nov 2017 |
Externally published | Yes |
Keywords
- 118 nm laser
- Nano-sized neutral metal oxide clusters
- Size-dependent reactivity
- TOF mass spectrometer
- VUV photoionization