A Simple Baseline for Cross-Domain Few-Shot Text Classification

Chen Zhang, Dawei Song*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Few-shot text classification has been largely explored due to its remarkable few-shot generalization ability to in-domain novel classes. Yet, the generalization ability of existing models to cross-domain novel classes has seldom be studied. To fill the gap, we investigate a new task, called cross-domain few-shot text classification (XFew) and present a simple baseline that witnesses an appealing cross-domain generalization capability while retains a nice in-domain generalization capability. Experiments are conducted on two datasets under both in-domain and cross-domain settings. The results show that current few-shot text classification models lack a mechanism to account for potential domain shift in the XFew task. In contrast, our proposed simple baseline achieves surprisingly superior results in comparison with other models in cross-domain scenarios, confirming the need of further research in the XFew task and providing insights for possible directions. (The code and datasets are available at https://github.com/GeneZC/XFew ).

Original languageEnglish
Title of host publicationNatural Language Processing and Chinese Computing - 10th CCF International Conference, NLPCC 2021, Proceedings
EditorsLu Wang, Yansong Feng, Yu Hong, Ruifang He
PublisherSpringer Science and Business Media Deutschland GmbH
Pages700-708
Number of pages9
ISBN (Print)9783030884796
DOIs
Publication statusPublished - 2021
Event10th CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2021 - Qingdao, China
Duration: 13 Oct 202117 Oct 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13028 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference10th CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2021
Country/TerritoryChina
CityQingdao
Period13/10/2117/10/21

Keywords

  • Cross-domain setting
  • Few-shot learning
  • Text classification

Fingerprint

Dive into the research topics of 'A Simple Baseline for Cross-Domain Few-Shot Text Classification'. Together they form a unique fingerprint.

Cite this