A Malware Classification Method Based on the Capsule Network

Ziyu Wang, Weijie Han*, Yue Lu, Jingfeng Xue

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Malware has become a serious threat to network security. Traditional static analysis methods usually cannot effectively detect packers, obfuscations, and variants. Dynamic analysis is not efficient when dealing with large amounts of malware. Aiming at the shortcomings of the existing methods, this paper proposes a method for analyzing malware based on the capsule network. It uses a supervised learning method to train the capsule network with a large number of malware samples with existing category labels. In the process of constructing features, this paper adopts a method of combining static features and dynamic features to extract the operation code information based on static analysis, and extract the API call sequence information based on general analysis. Both characteristics can well represent the structure and behavior of malware. Then use N-Gram to construct sequence features, visualize the N-Gram sequence, generate malware images, and finally use the capsule network for classification detection. In addition, this paper improves the original capsule network and verifies the effect of the improved model.

Original languageEnglish
Title of host publicationMachine Learning for Cyber Security - Third International Conference, ML4CS 2020, Proceedings
EditorsXiaofeng Chen, Hongyang Yan, Qiben Yan, Xiangliang Zhang
PublisherSpringer Science and Business Media Deutschland GmbH
Pages35-49
Number of pages15
ISBN (Print)9783030622220
DOIs
Publication statusPublished - 2020
Event3rd International Conference on Machine Learning for Cyber Security, ML4CS 2020 - Guangzhou, China
Duration: 8 Oct 202010 Oct 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12486 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference3rd International Conference on Machine Learning for Cyber Security, ML4CS 2020
Country/TerritoryChina
CityGuangzhou
Period8/10/2010/10/20

Keywords

  • API
  • Capsule network
  • Malware
  • N-Gram

Fingerprint

Dive into the research topics of 'A Malware Classification Method Based on the Capsule Network'. Together they form a unique fingerprint.

Cite this