Abstract
While numerous needle-based continuous glucose monitoring (CGM) devices have been available today, the insufficient enzyme immobilization on monitoring sensor severely limited the detection sensitivity of CGM devices. This manuscript describes here a high-sensitivity continuous glucose sensor (CGS) by engineering a porous 3D cellulose/carbon nanotube (CNT) network on the working electrode, which subcutaneously increases the detection enzyme capacity and thus significantly enhances the signal intensity and sensitivity. Furthermore, a tapered needle made of soft resin is engraved into three distinct microgrooves where the glucose oxidase (GOD)-modified working electrode, Pt-modified counter electrode, and Ag/AgCl-modified reference electrode are separately constructed inside the microgrooves. Moreover, a miniature potentiostat tailored for signal acquisition, processing, and transmission is engineered. After incorporated with a wireless circuit, the proposed CGS achieves continuous glucose monitoring in interstitial fluid with a surprising sensitivity of 9.15 μA/mM/cm2, as well as maintaining functionality for a period of up to 9 days in live rats. This work provides the public a high-sensitivity continuous glucose monitoring device.
Original language | English |
---|---|
Article number | 127201 |
Journal | Talanta |
Volume | 283 |
DOIs | |
Publication status | Published - 1 Feb 2025 |
Keywords
- Carbon nanotube
- Glucose monitoring
- Glucose oxidase
- Glucose sensor
- Porous 3D cellulose