A File-Level Continuous Data Protection Scheme for Enforcing Security Baseline

Xiangxiang Jiang, Yuxi Ma, Gang Zhao, Xiaohui Kuang, Yuanzhang Li, Ruyun Zhang*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Massive data is the basis of machine learning, and continuous data protection is an effective means to ensure data integrity and availability. At present, continuous data protection adopts the same backup strategy in different host security environments, ignoring the potential relationship between host security state and data destruction, resulting in a low utilization rate of backup storage space. To make better use of backup storage space and improve data recovery speed, this paper proposes a file-level continuous data protection scheme for enforcing security baseline (SB-CDP). SB-CDP combines a security baseline with continuous data protection to dynamically adjust the backup strategy based on the host security status provided by the security baseline. The experimental results show that, on the one hand, SB-CDP can effectively utilize the backup storage space, on the other hand, it can effectively improve the data recovery speed and reduce the impact on the system performance.

Original languageEnglish
Title of host publicationMachine Learning for Cyber Security - Third International Conference, ML4CS 2020, Proceedings
EditorsXiaofeng Chen, Hongyang Yan, Qiben Yan, Xiangliang Zhang
PublisherSpringer Science and Business Media Deutschland GmbH
Pages519-529
Number of pages11
ISBN (Print)9783030622220
DOIs
Publication statusPublished - 2020
Event3rd International Conference on Machine Learning for Cyber Security, ML4CS 2020 - Guangzhou, China
Duration: 8 Oct 202010 Oct 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12486 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference3rd International Conference on Machine Learning for Cyber Security, ML4CS 2020
Country/TerritoryChina
CityGuangzhou
Period8/10/2010/10/20

Keywords

  • File level continuous data protection
  • Full backup
  • Incremental backup
  • Quantitative analysis
  • Security baseline

Fingerprint

Dive into the research topics of 'A File-Level Continuous Data Protection Scheme for Enforcing Security Baseline'. Together they form a unique fingerprint.

Cite this