A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis

Chang Xin Zhao, Jia Ning Liu, Juan Wang, Changda Wang, Xin Guo, Xi Yao Li, Xiao Chen, Li Song, Bo Quan Li*, Qiang Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

161 Citations (Scopus)

Abstract

Rechargeable zinc-air batteries call for high-performance bifunctional oxygen electrocatalysts. Transition metal single-atom catalysts constitute a promising candidate considering their maximum atom efficiency and high intrinsic activity. However, the fabrication of atomically dispersed transition metal sites is highly challenging, creating a need for for new design strategies and synthesis methods. Here, a clicking confinement strategy is proposed to efficiently predisperse transitional metal atoms in a precursor directed by click chemistry and ensure successful construction of abundant single-atom sites. Concretely, cobalt-coordinated porphyrin units are covalently clicked on the substrate for the confinement of the cobalt atoms and affording a Co-N-C electrocatalyst. The Co-N-C electrocatalyst exhibits impressive bifunctional oxygen electrocatalytic performances with an activity indicator ΔE of 0.79 V. This work extends the approach to prepare transition metal single-atom sites for efficient bifunctional oxygen electrocatalysis and inspires the methodology on precise synthesis of catalytic materials.

Original languageEnglish
Article numberabn5091
JournalScience advances
Volume8
Issue number11
DOIs
Publication statusPublished - Mar 2022

Fingerprint

Dive into the research topics of 'A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis'. Together they form a unique fingerprint.

Cite this