Zero-Shot Learning with Joint Generative Adversarial Networks

Minwan Zhang, Xiaohua Wang, Yueting Shi, Shiwei Ren, Weijiang Wang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

Zero-shot learning (ZSL) is implemented by transferring knowledge from seen classes to unseen classes through embedding space or feature generation. However, the embedding-based method has a hubness problem, and the generation-based method may contain considerable bias. To solve these problems, a joint model with multiple generative adversarial networks (JG-ZSL) is proposed in this paper. Firstly, we combined the generation-based model and the embedding-based model to build a hybrid ZSL framework by mapping the real samples and the synthetic samples into the embedding space for classification, which alleviates the problem of data imbalance effectively. Secondly, based on the original generation-method model, a coupled GAN is introduced to generate semantic embeddings, which can generate semantic vectors for unseen classes in embedded space to alleviate the bias of mapping results. Finally, semantic-relevant self-adaptive margin center loss was used, which can explicitly encourage intra-class compactness and inter-class separability, and it can also guide coupled GAN to generate discriminative and representative semantic features. All the experiments on the four standard datasets (CUB, AWA1, AWA2, SUN) show that the proposed method is effective.

源语言英语
文章编号2308
期刊Electronics (Switzerland)
12
10
DOI
出版状态已出版 - 5月 2023

指纹

探究 'Zero-Shot Learning with Joint Generative Adversarial Networks' 的科研主题。它们共同构成独一无二的指纹。

引用此