What and Where to See: Deep Attention Aggregation Network for Action Detection

Yuxuan He, Ming Gang Gan*, Xiaozhou Liu

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

With the development of deep convolutional neural networks, 2D CNN is widely used in action detection task. Although 2D CNN extracts rich features from video frames, these features also contain redundant information. In response to this problem, we propose Residual Channel-Spatial Attention module (RCSA) to guide the network what (object patterns) and where (spatially) need to be focused. Meanwhile, in order to effectively utilize the rich spatial and semantic features extracted by different layers of deep networks, we combine RCSA and deep aggregation network to propose Deep Attention Aggregation Network. Experiment resultes on two datasets J-HMDB and UCF-101 show that the proposed network achieves state-of-the-art performances on action detection.

源语言英语
主期刊名Intelligent Robotics and Applications - 15th International Conference, ICIRA 2022, Proceedings
编辑Honghai Liu, Weihong Ren, Zhouping Yin, Lianqing Liu, Li Jiang, Guoying Gu, Xinyu Wu
出版商Springer Science and Business Media Deutschland GmbH
177-187
页数11
ISBN(印刷版)9783031138430
DOI
出版状态已出版 - 2022
活动15th International Conference on Intelligent Robotics and Applications, ICIRA 2022 - Harbin, 中国
期限: 1 8月 20223 8月 2022

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
13455 LNAI
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议15th International Conference on Intelligent Robotics and Applications, ICIRA 2022
国家/地区中国
Harbin
时期1/08/223/08/22

指纹

探究 'What and Where to See: Deep Attention Aggregation Network for Action Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此