Wellposedness for the magnetohydrodynamics equation in critical space

Junyong Zhang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

6 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 6
  • Captures
    • Readers: 1
see details

摘要

In this article, we study wellposedness of magnetohydrodynamics equation in Besov space in ℝ 3 × [0, T]. Comparing to Kato's space [T. Kato, Strong L p solutions of the Navier–Stokes equations in ℝ m with applications to weak solutions, Math. Z 187 (1984), pp. 471–480] for Navier–Stokes equation, we give existence and uniqueness of the solution of MHD in (Formula presented.) with (p, q, r) ∈ [1, ∞] × [2, ∞] × [1, ∞] such that (Formula presented.) by applying contraction argument directly. Moreover, we find that the bilinear operator ℬ seeing below is continuous from (Formula presented.) to (Formula presented.) for (Formula presented.) which improves the well-known result for r = ∞.

源语言英语
页(从-至)773-785
页数13
期刊International Journal of Phytoremediation
87
7
DOI
出版状态已出版 - 7月 2008
已对外发布

指纹

探究 'Wellposedness for the magnetohydrodynamics equation in critical space' 的科研主题。它们共同构成独一无二的指纹。

引用此

Zhang, J. (2008). Wellposedness for the magnetohydrodynamics equation in critical space. International Journal of Phytoremediation, 87(7), 773-785. https://doi.org/10.1080/00036810802272641