Weighted Recursive Least Square for Parameter Identification of Nonlinear Wiener–Hammerstein Systems

Ruiguang Lan, Xuemei Ren*, Linwei Li

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

In this paper, in order to solve the problem that the controlled object is complex or nonlinear in many times, a weighted recursive least square scheme is used to estimate the parameters of the nonlinear Wiener-Hammerstein systems with the dead zone. First of all, we make the unknown dead zone linear by the switching operator and the intermediate function, and construct the parameter identification model of Wiener-Hammerstein system. Secondly, we obtain the parametric regression model of the concerned systems for parameter identification using the key-term separation principle. Thirdly, we build a fictitious auxiliary model to replace the immeasurable intermediate variable. And then, we estimate the parameters of the obtained model with the fictitious auxiliary model using the weighted recursive least square. Finally, we verify the feasibility of the algorithm by MATLAB simulation.

源语言英语
主期刊名Proceedings of 2021 Chinese Intelligent Systems Conference
编辑Yingmin Jia, Weicun Zhang, Yongling Fu, Zhiyuan Yu, Song Zheng
出版商Springer Science and Business Media Deutschland GmbH
447-455
页数9
ISBN(印刷版)9789811663277
DOI
出版状态已出版 - 2022
活动17th Chinese Intelligent Systems Conference, CISC 2021 - Fuzhou, 中国
期限: 16 10月 202117 10月 2021

出版系列

姓名Lecture Notes in Electrical Engineering
803 LNEE
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议17th Chinese Intelligent Systems Conference, CISC 2021
国家/地区中国
Fuzhou
时期16/10/2117/10/21

指纹

探究 'Weighted Recursive Least Square for Parameter Identification of Nonlinear Wiener–Hammerstein Systems' 的科研主题。它们共同构成独一无二的指纹。

引用此