Weight-Adapted Convolution Neural Network for Facial Expression Recognition in Human-Robot Interaction

Min Wu, Wanjuan Su, Luefeng Chen*, Zhentao Liu, Weihua Cao, Kaoru Hirota

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

64 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 66
  • Captures
    • Readers: 48
see details

摘要

The weight-adapted convolution neural network (WACNN) is proposed to extract discriminative expression representations for recognizing facial expression. It aims to make good use of the convolution neural network's (CNN's) potential performance in avoiding local optima and speeding up convergence by the hybrid genetic algorithm (HGA) with optimal initial population, in such a way that it realizes deep and global emotion understanding in human-robot interaction. Moreover, the idea of novelty search is introduced to solve the deception problem in the HGA, which can expend the search space to help genetic algorithm jump out of local optimum and optimize large-scale parameters. In the proposal, the facial expression image preprocessing is conducted first, then the low-level expression features are extracted by using a principal component analysis. Finally, the high-level expression semantic features are extracted and recognized by WACNN which is optimized by HGA. In order to evaluate the effectiveness of WACNN, experiments on JAFFE, CK+, and static facial expressions in the wild 2.0 databases are carried out by using {k} -fold cross validation, and experimental results show the recognition accuracies of the proposal are superior to that of the state-of-the-art, such as local directional ternary pattern and weighted mixture deep neural network (DNN), which aim to extract discriminative and are the DNN-based methods. Moreover, recognition accuracies of the proposal are also higher than the deep CNN without HGA, which indicates that the proposal has better global optimization ability. Meanwhile, preliminary application experiments are also carried out by using the proposed algorithm on the emotional social robot system, where nine volunteers and two-wheeled robots experience the scenario of emotion understanding. Application results indicate that the wheeled robots can recognize basic expressions, such as happy, surprise, and so on.

源语言英语
文章编号8663434
页(从-至)1473-1484
页数12
期刊IEEE Transactions on Systems, Man, and Cybernetics: Systems
51
3
DOI
出版状态已出版 - 3月 2021
已对外发布

指纹

探究 'Weight-Adapted Convolution Neural Network for Facial Expression Recognition in Human-Robot Interaction' 的科研主题。它们共同构成独一无二的指纹。

引用此

Wu, M., Su, W., Chen, L., Liu, Z., Cao, W., & Hirota, K. (2021). Weight-Adapted Convolution Neural Network for Facial Expression Recognition in Human-Robot Interaction. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(3), 1473-1484. 文章 8663434. https://doi.org/10.1109/TSMC.2019.2897330