Volumetric segmentation of white matter tracts with label embedding

Wan Liu, Qi Lu, Zhizheng Zhuo, Yuxing Li, Yunyun Duan, Pinnan Yu, Liying Qu, Chuyang Ye*, Yaou Liu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

14 引用 (Scopus)

摘要

Convolutional neural networks have achieved state-of-the-art performance for white matter (WM) tract segmentation based on diffusion magnetic resonance imaging (dMRI). However, the segmentation can still be difficult for challenging WM tracts with thin bodies or complicated shapes; the segmentation is even more problematic in challenging scenarios with reduced data quality or domain shift between training and test data, which can be easily encountered in clinical settings. In this work, we seek to improve the segmentation of WM tracts, especially for challenging WM tracts in challenging scenarios. In particular, our method is based on volumetric WM tract segmentation, where voxels are directly labeled without performing tractography. To improve the segmentation, we exploit the characteristics of WM tracts that different tracts can cross or overlap and revise the network design accordingly. Specifically, because multiple tracts can co-exist in a voxel, we hypothesize that the different tract labels can be correlated. The tract labels at a single voxel are concatenated as a label vector, the length of which is the number of tract labels. Due to the tract correlation, this label vector can be projected into a lower-dimensional space—referred to as the embedded space—for each voxel, which allows the segmentation network to solve a simpler problem. By predicting the coordinate in the embedded space for the tracts at each voxel and subsequently mapping the coordinate to the label vector with a reconstruction module, the segmentation result can be achieved. To facilitate the learning of the embedded space, an auxiliary label reconstruction loss is integrated with the segmentation accuracy loss during network training, and network training and inference are end-to-end. Our method was validated on two dMRI datasets under various settings. The results show that the proposed method improves the accuracy of WM tract segmentation, and the improvement is more prominent for challenging tracts in challenging scenarios.

源语言英语
文章编号118934
期刊NeuroImage
250
DOI
出版状态已出版 - 15 4月 2022

指纹

探究 'Volumetric segmentation of white matter tracts with label embedding' 的科研主题。它们共同构成独一无二的指纹。

引用此