Visual Tracking Using Strong Classifier and Structural Local Sparse Descriptors

Bo Ma, Jianbing Shen, Yangbiao Liu, Hongwei Hu, Ling Shao, Xuelong Li

科研成果: 期刊稿件文章同行评审

112 引用 (Scopus)

摘要

Sparse coding methods have achieved great success in visual tracking, and we present a strong classifier and structural local sparse descriptors for robust visual tracking. Since the summary features considering the sparse codes are sensitive to occlusion and other interfering factors, we extract local sparse descriptors from a fraction of all patches by performing a pooling operation. The collection of local sparse descriptors is combined into a boosting-based strong classifier for robust visual tracking using a discriminative appearance model. Furthermore, a structural reconstruction error based weight computation method is proposed to adjust the classification score of each candidate for more precise tracking results. To handle appearance changes during tracking, we present an occlusion-aware template update scheme. Comprehensive experimental comparisons with the state-of-the-art algorithms demonstrated the better performance of the proposed method.

源语言英语
文章编号7173057
页(从-至)1818-1828
页数11
期刊IEEE Transactions on Multimedia
17
10
DOI
出版状态已出版 - 10月 2015

指纹

探究 'Visual Tracking Using Strong Classifier and Structural Local Sparse Descriptors' 的科研主题。它们共同构成独一无二的指纹。

引用此