Visible Spectral Iris Segmentation via Deep Convolutional Network

Yuqing He*, Saijie Wang, Kuo Pei, Mingqi Liu, Jiawei Lai

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

8 引用 (Scopus)

摘要

Iris segmentation is the prerequisite for the precise iris recognition. Visible spectral iris images may result in lower segmentation accuracy due to noise interference. We use deep learning method to segment the iris region in visible spectral iris images. A deep convolution neural network is designed to extract the eye features and segment the iris, pupil, sclera and background. It’s an end-to-end model which requires no further processing. We collect the eye images and manually mask different part of the eye to establish the visible spectral iris dataset for training and testing. The proposed method was trained based on DeepLab framework. Experimental results show that the proposed method has efficiency on iris segmentation.

源语言英语
主期刊名Biometric Recognition - 12th Chinese Conference, CCBR 2017, Proceedings
编辑Yunhong Wang, Yu Qiao, Jie Zhou, Jianjiang Feng, Zhenan Sun, Zhenhua Guo, Shiguang Shan, Linlin Shen, Shiqi Yu, Yong Xu
出版商Springer Verlag
428-435
页数8
ISBN(印刷版)9783319699226
DOI
出版状态已出版 - 2017
活动12th Chinese Conference on Biometric Recognition, CCBR 2017 - Beijing, 中国
期限: 28 10月 201729 10月 2017

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10568 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议12th Chinese Conference on Biometric Recognition, CCBR 2017
国家/地区中国
Beijing
时期28/10/1729/10/17

指纹

探究 'Visible Spectral Iris Segmentation via Deep Convolutional Network' 的科研主题。它们共同构成独一无二的指纹。

引用此