Video saliency detection using object proposals

Fang Guo, Wenguan Wang, Jianbing Shen*, Ling Shao, Jian Yang, Dacheng Tao, Yuan Yan Tang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

90 引用 (Scopus)

摘要

In this paper, we introduce a novel approach to identify salient object regions in videos via object proposals. The core idea is to solve the saliency detection problem by ranking and selecting the salient proposals based on object-level saliency cues. Object proposals offer a more complete and high-level representation, which naturally caters to the needs of salient object detection. As well as introducing this novel solution for video salient object detection, we reorganize various discriminative saliency cues and traditional saliency assumptions on object proposals. With object candidates, a proposal ranking and voting scheme, based on various object-level saliency cues, is designed to screen out nonsalient parts, select salient object regions, and to infer an initial saliency estimate. Then a saliency optimization process that considers temporal consistency and appearance differences between salient and nonsalient regions is used to refine the initial saliency estimates. Our experiments on public datasets (SegTrackV2, Freiburg-Berkeley Motion Segmentation Dataset, and Densely Annotated Video Segmentation) validate the effectiveness, and the proposed method produces significant improvements over state-of-the-art algorithms.

源语言英语
文章编号8082546
页(从-至)3159-3170
页数12
期刊IEEE Transactions on Cybernetics
48
11
DOI
出版状态已出版 - 11月 2018

指纹

探究 'Video saliency detection using object proposals' 的科研主题。它们共同构成独一无二的指纹。

引用此