Video pose estimation via medium granularity graphical model with spatial-temporal symmetric constraint part model

Qingxuan Shi, Huijun Di, Yao Lu, Ming Qin, Xuedong Tian

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

We address the problem of full body human pose estimation in video. Most previous work consider body part, pose or trajectory of body part as basic unit to compose the pose sequence. In contrast, we consider tracklet of body part as the basic unit. Based on this medium granularity representation we develop a spatio-temporal graphical model to select an optimal tracklet for each part in each video segment. In our model, tracklet nodes of symmetric parts are coupled to one node to overcome the double counting problem. Through iterative spatial and temporal parsing, optimal solution is achieved in polynomial time. We apply our model on three publicly available datasets and show remarkable quantitative and qualitative improvements over the state-of-the-art approaches.

源语言英语
主期刊名2016 IEEE International Conference on Image Processing, ICIP 2016 - Proceedings
出版商IEEE Computer Society
1299-1303
页数5
ISBN(电子版)9781467399616
DOI
出版状态已出版 - 3 8月 2016
活动23rd IEEE International Conference on Image Processing, ICIP 2016 - Phoenix, 美国
期限: 25 9月 201628 9月 2016

出版系列

姓名Proceedings - International Conference on Image Processing, ICIP
2016-August
ISSN(印刷版)1522-4880

会议

会议23rd IEEE International Conference on Image Processing, ICIP 2016
国家/地区美国
Phoenix
时期25/09/1628/09/16

指纹

探究 'Video pose estimation via medium granularity graphical model with spatial-temporal symmetric constraint part model' 的科研主题。它们共同构成独一无二的指纹。

引用此