TY - GEN
T1 - Video Anomaly Detection via Sequentially Learning Multiple Pretext Tasks
AU - Shi, Chenrui
AU - Sun, Che
AU - Wu, Yuwei
AU - Jia, Yunde
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Learning multiple pretext tasks is a popular approach to tackle the nonalignment problem in unsupervised video anomaly detection. However, the conventional learning method of simultaneously learning multiple pretext tasks, is prone to sub-optimal solutions, incurring sharp performance drops. In this paper, we propose to sequentially learn multiple pretext tasks according to their difficulties in an ascending manner to improve the performance of anomaly detection. The core idea is to relax the learning objective by starting with easy pretext tasks in the early stage and gradually refine it by involving more challenging pretext tasks later on. In this way, our method is able to reduce the difficulties of learning and avoid converging to sub-optimal solutions. Specifically, we design a tailored sequential learning order for three widely-used pretext tasks. It starts with frame prediction task, then moves on to frame reconstruction task and last ends with frame-order classification task. We further introduce a new contrastive loss which makes the learned representations of normality more discriminative by pushing normal and pseudo-abnormal samples apart. Extensive experiments on three datasets demonstrate the effectiveness of our method.
AB - Learning multiple pretext tasks is a popular approach to tackle the nonalignment problem in unsupervised video anomaly detection. However, the conventional learning method of simultaneously learning multiple pretext tasks, is prone to sub-optimal solutions, incurring sharp performance drops. In this paper, we propose to sequentially learn multiple pretext tasks according to their difficulties in an ascending manner to improve the performance of anomaly detection. The core idea is to relax the learning objective by starting with easy pretext tasks in the early stage and gradually refine it by involving more challenging pretext tasks later on. In this way, our method is able to reduce the difficulties of learning and avoid converging to sub-optimal solutions. Specifically, we design a tailored sequential learning order for three widely-used pretext tasks. It starts with frame prediction task, then moves on to frame reconstruction task and last ends with frame-order classification task. We further introduce a new contrastive loss which makes the learned representations of normality more discriminative by pushing normal and pseudo-abnormal samples apart. Extensive experiments on three datasets demonstrate the effectiveness of our method.
UR - http://www.scopus.com/inward/record.url?scp=85178415032&partnerID=8YFLogxK
U2 - 10.1109/ICCV51070.2023.00948
DO - 10.1109/ICCV51070.2023.00948
M3 - Conference contribution
AN - SCOPUS:85178415032
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 10296
EP - 10306
BT - Proceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Y2 - 2 October 2023 through 6 October 2023
ER -