TY - GEN
T1 - Variational deep embedding
T2 - 26th International Joint Conference on Artificial Intelligence, IJCAI 2017
AU - Jiang, Zhuxi
AU - Zheng, Yin
AU - Tan, Huachun
AU - Tang, Bangsheng
AU - Zhou, Hanning
PY - 2017
Y1 - 2017
N2 - Clustering is among the most fundamental tasks in machine learning and artificial intelligence. In this paper, we propose Variational Deep Embedding (VaDE), a novel unsupervised generative clustering approach within the framework of Variational Auto-Encoder (VAE). Specifically, VaDE models the data generative procedure with a Gaussian Mixture Model (GMM) and a deep neural network (DNN): 1) the GMM picks a cluster; 2) from which a latent embedding is generated; 3) then the DNN decodes the latent embedding into an observable. Inference in VaDE is done in a variational way: a different DNN is used to encode observables to latent embeddings, so that the evidence lower bound (ELBO) can be optimized using the Stochastic Gradient Variational Bayes (SGVB) estimator and the reparameterization trick. Quantitative comparisons with strong baselines are included in this paper, and experimental results show that VaDE significantly outperforms the state-of-the-art clustering methods on 5 benchmarks from various modalities. Moreover, by VaDE's generative nature, we show its capability of generating highly realistic samples for any specified cluster, without using supervised information during training.
AB - Clustering is among the most fundamental tasks in machine learning and artificial intelligence. In this paper, we propose Variational Deep Embedding (VaDE), a novel unsupervised generative clustering approach within the framework of Variational Auto-Encoder (VAE). Specifically, VaDE models the data generative procedure with a Gaussian Mixture Model (GMM) and a deep neural network (DNN): 1) the GMM picks a cluster; 2) from which a latent embedding is generated; 3) then the DNN decodes the latent embedding into an observable. Inference in VaDE is done in a variational way: a different DNN is used to encode observables to latent embeddings, so that the evidence lower bound (ELBO) can be optimized using the Stochastic Gradient Variational Bayes (SGVB) estimator and the reparameterization trick. Quantitative comparisons with strong baselines are included in this paper, and experimental results show that VaDE significantly outperforms the state-of-the-art clustering methods on 5 benchmarks from various modalities. Moreover, by VaDE's generative nature, we show its capability of generating highly realistic samples for any specified cluster, without using supervised information during training.
UR - http://www.scopus.com/inward/record.url?scp=85031928518&partnerID=8YFLogxK
U2 - 10.24963/ijcai.2017/273
DO - 10.24963/ijcai.2017/273
M3 - Conference contribution
AN - SCOPUS:85031928518
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 1965
EP - 1972
BT - 26th International Joint Conference on Artificial Intelligence, IJCAI 2017
A2 - Sierra, Carles
PB - International Joint Conferences on Artificial Intelligence
Y2 - 19 August 2017 through 25 August 2017
ER -