Using RBF neural network for fault diagnosis in satellite ADS

Lin Cai*, Yuancan Huang, Shaolin Lu, Jiabin Chen

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

In this paper, a new hybrid learning strategy composed of K-means clustering algorithm and Kalman filtering Is employed to train radial based function (RBF) neural network for fault diagnosis In satellite attitude determination system. Because Kalman filtering and K-means clustering algorithm both adopt linear update rule, their combination produces a new hybrid training algorithm that can converges quickly, Simulation results demonstrate that the proposed approach is effective for fault diagnosis In satellite attitude determination system.

源语言英语
主期刊名2007 IEEE International Conference on Control and Automation, ICCA
出版商Institute of Electrical and Electronics Engineers Inc.
1052-1055
页数4
ISBN(印刷版)1424408180, 9781424408184
DOI
出版状态已出版 - 2007
活动2007 IEEE International Conference on Control and Automation, ICCA - Guangzhou, 中国
期限: 30 5月 20071 6月 2007

出版系列

姓名2007 IEEE International Conference on Control and Automation, ICCA

会议

会议2007 IEEE International Conference on Control and Automation, ICCA
国家/地区中国
Guangzhou
时期30/05/071/06/07

指纹

探究 'Using RBF neural network for fault diagnosis in satellite ADS' 的科研主题。它们共同构成独一无二的指纹。

引用此