摘要
A general data sparse representation of electromagnetic characteristics of an arbitrarily-shaped target is developed by using the machine learning model. The data sparse representation of the electromagnetic response is firstly figured out by the skeletonization technique. The machine learning approach is then employed to construct a general and flexible model which can capture the electromagnetic characteristics of the target of interest. Numerical experiments are conducted to validate the performance of the model.
源语言 | 英语 |
---|---|
主期刊名 | 2019 IEEE International Conference on Computational Electromagnetics, ICCEM 2019 - Proceedings |
出版商 | Institute of Electrical and Electronics Engineers Inc. |
ISBN(电子版) | 9781538671115 |
DOI | |
出版状态 | 已出版 - 3月 2019 |
活动 | 5th IEEE International Conference on Computational Electromagnetics, ICCEM 2019 - Shanghai, 中国 期限: 20 3月 2019 → 22 3月 2019 |
出版系列
姓名 | 2019 IEEE International Conference on Computational Electromagnetics, ICCEM 2019 - Proceedings |
---|
会议
会议 | 5th IEEE International Conference on Computational Electromagnetics, ICCEM 2019 |
---|---|
国家/地区 | 中国 |
市 | Shanghai |
时期 | 20/03/19 → 22/03/19 |
指纹
探究 'Using Machine Learning to Represent Electromagnetic Characteristics of Arbitrarily-shaped Targets' 的科研主题。它们共同构成独一无二的指纹。引用此
Pan, X. M., Song, B. Y., Huang, S. L., & Sheng, X. Q. (2019). Using Machine Learning to Represent Electromagnetic Characteristics of Arbitrarily-shaped Targets. 在 2019 IEEE International Conference on Computational Electromagnetics, ICCEM 2019 - Proceedings 文章 8778911 (2019 IEEE International Conference on Computational Electromagnetics, ICCEM 2019 - Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/COMPEM.2019.8778911