Unsupervised nearest regularized subspace for anomaly detection in hyperspectral imagery

Wei Li, Qian Du

科研成果: 书/报告/会议事项章节会议稿件同行评审

18 引用 (Scopus)

摘要

A method of unsupervised nearest regularized subspace is proposed for anomaly detection in hyperspectral imagery. Based on a dual window, an approximation of each testing pixel is a representation of surrounding data via a linear combination, for which the weight vector is calculated by distance-weighted Tikhonov regularization. Proposed detector returns the similarity measurement between the testing pixel and its approximation. Experimental results for real hyperspectral data of proposed approach are demonstrated and compared to other traditional detection techniques.

源语言英语
主期刊名2013 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2013 - Proceedings
1055-1058
页数4
DOI
出版状态已出版 - 2013
已对外发布
活动2013 33rd IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2013 - Melbourne, VIC, 澳大利亚
期限: 21 7月 201326 7月 2013

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)

会议

会议2013 33rd IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2013
国家/地区澳大利亚
Melbourne, VIC
时期21/07/1326/07/13

指纹

探究 'Unsupervised nearest regularized subspace for anomaly detection in hyperspectral imagery' 的科研主题。它们共同构成独一无二的指纹。

引用此