Unsupervised-Learning Neural Network for Fiber Nonlinearity Compensation

Pinjing He, Feilong Wu, Meng Yang, Aiying Yang*, Peng Guo, Yaojun Qiao, Xiangjun Xin

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

A fiber nonlinearity compensation scheme based on an unsupervised-learning neural network is proposed. In the proposed scheme, labels in the training data and weights of the neural network are iteratively updated until converging. To validate the proposed scheme, a 3200 km dual-polarization 16-QAM simulation link and an 1800 km single-polarization experimental link were carried out. Simulation and experiment results validate that the proposed method can achieve the same equalization performance as the supervised-learning-neural-network-based scheme, without any pre-defined training data.

源语言英语
主期刊名2021 International Conference on Optical Instruments and Technology
主期刊副标题Optical Communication and Optical Signal Processing
编辑Jian Chen, Yi Dong, Shilong Pan, Yang Qiu, Fabien Bretenaker
出版商SPIE
ISBN(电子版)9781510655614
DOI
出版状态已出版 - 2022
活动2021 International Conference on Optical Instruments and Technology: Optical Communication and Optical Signal Processing - Virtual, Online, 中国
期限: 8 4月 202210 4月 2022

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
12278
ISSN(印刷版)0277-786X
ISSN(电子版)1996-756X

会议

会议2021 International Conference on Optical Instruments and Technology: Optical Communication and Optical Signal Processing
国家/地区中国
Virtual, Online
时期8/04/2210/04/22

指纹

探究 'Unsupervised-Learning Neural Network for Fiber Nonlinearity Compensation' 的科研主题。它们共同构成独一无二的指纹。

引用此