Unsupervised deep learning for 3D reconstruction with dual-frequency fringe projection profilometry

Sizhe Fan, Shaoli Liu, Xu Zhang, Hao Huang, Wei Liu, Peng Jin

科研成果: 期刊稿件文章同行评审

19 引用 (Scopus)

摘要

The fringe projection profilometry (FPP) technique has been widely applied in three-dimensional (3D) reconstruction in industry for its high speed and high accuracy. Recently, deep learning has been successfully applied in FPP to achieve high-accuracy and robust 3D reconstructions in an efficient way. However, the network training needs to generate and label numerous ground truth 3D data, which can be time-consuming and labor-intensive. In this paper, we propose to design an unsupervised convolutional neural network (CNN) model based on dual-frequency fringe images to fix the problem. The fringe reprojection model is created to transform the output height map to the corresponding fringe image to realize the unsupervised training of the CNN. Our network takes two fringe images with different frequencies and outputs the corresponding height map. Unlike most of the previous works, our proposed network avoids numerous data annotations and can be trained without ground truth 3D data for unsupervised learning. Experimental results verify that our proposed unsupervised model (1) can get competitive-accuracy reconstruction results compared with previous supervised methods, (2) has excellent anti-noise and generalization performance and (3) saves time for dataset generation and labeling (3.2 hours, one-sixth of the supervised method) and computer space for dataset storage (1.27 GB, one-tenth of the supervised method).

源语言英语
页(从-至)32547-32567
页数21
期刊Optics Express
29
20
DOI
出版状态已出版 - 27 9月 2021

指纹

探究 'Unsupervised deep learning for 3D reconstruction with dual-frequency fringe projection profilometry' 的科研主题。它们共同构成独一无二的指纹。

引用此