Universality for bounded degree spanning trees in randomly perturbed graphs

Julia Böttcher*, Jie Han, Yoshiharu Kohayakawa, Richard Montgomery, Olaf Parczyk, Yury Person

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

32 引用 (Scopus)

摘要

We solve a problem of Krivelevich, Kwan and Sudakov concerning the threshold for the containment of all bounded degree spanning trees in the model of randomly perturbed dense graphs. More precisely, we show that, if we start with a dense graph Gα on n vertices with δ(Gα) ≥ αn for α > 0 and we add to it the binomial random graph G(n,C/n), then with high probability the graph Gα∪G(n,C/n) contains copies of all spanning trees with maximum degree at most Δ simultaneously, where C depends only on α and Δ.

源语言英语
页(从-至)854-864
页数11
期刊Random Structures and Algorithms
55
4
DOI
出版状态已出版 - 1 12月 2019
已对外发布

指纹

探究 'Universality for bounded degree spanning trees in randomly perturbed graphs' 的科研主题。它们共同构成独一无二的指纹。

引用此