Universal value iteration networks: When spatially-invariant is not universal

Li Zhang, Xin Li*, Sen Chen, Hongyu Zang, Jie Huang, Mingzhong Wang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

In this paper, we first formally define the problem set of spatially invariant Markov Decision Processes (MDPs), and show that Value Iteration Networks (VIN) and its extensions are computationally bounded to it due to the use of the convolution kernel. To generalize VIN to spatially variant MDPs, we propose Universal Value Iteration Networks (UVIN). In comparison with VIN, UVIN automatically learns a flexible but compact network structure to encode the transition dynamics of the problems and support the differentiable planning module. We evaluate UVIN with both spatially invariant and spatially variant tasks, including navigation in regular maze, chessboard maze, and Mars, and Minecraft item syntheses. Results show that UVIN can achieve similar performance as VIN and its extensions on spatially invariant tasks, and significantly outperforms other models on more general problems.

源语言英语
主期刊名AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
出版商AAAI press
6778-6785
页数8
ISBN(电子版)9781577358350
出版状态已出版 - 2020
活动34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, 美国
期限: 7 2月 202012 2月 2020

出版系列

姓名AAAI 2020 - 34th AAAI Conference on Artificial Intelligence

会议

会议34th AAAI Conference on Artificial Intelligence, AAAI 2020
国家/地区美国
New York
时期7/02/2012/02/20

指纹

探究 'Universal value iteration networks: When spatially-invariant is not universal' 的科研主题。它们共同构成独一无二的指纹。

引用此