Uniqueness of stable processes with drift

Zhen Qing Chen, Longmin Wang

科研成果: 期刊稿件文章同行评审

28 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 28
  • Captures
    • Readers: 9
see details

摘要

Suppose that d ≥ 1 and α ∈ (1, 2). Let Lb = −(−Δ)α/2 + b · ∇, where b is an ℝd-valued measurable function on Rd belonging to a certain Kato class of the rotationally symmetric α-stable process Y on ℝd. We show that the martingale problem for (Lb, Cc (ℝd)) has a unique solution for every starting point x ∈ ℝd. Furthermore, we show that the stochastic differential equation dXt = dYt + b(Xt)dt with X0 = x has a unique weak solution for every x ∈ ℝd.

源语言英语
页(从-至)2661-2675
页数15
期刊Proceedings of the American Mathematical Society
144
6
DOI
出版状态已出版 - 6月 2016
已对外发布

指纹

探究 'Uniqueness of stable processes with drift' 的科研主题。它们共同构成独一无二的指纹。

引用此

Chen, Z. Q., & Wang, L. (2016). Uniqueness of stable processes with drift. Proceedings of the American Mathematical Society, 144(6), 2661-2675. https://doi.org/10.1090/proc/12909