Uniqueness for reflecting Brownian motion in lip domains

Richard F. Bass, Krzysztof Burdzy*, Zhen Qing Chen

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

19 引用 (Scopus)

摘要

A lip domain is a Lipschitz domain where the Lipschitz constant is strictly less than one. We prove strong existence and pathwise uniqueness for the solution X = {Xt, t ≥ 0} to the Skorokhod equation dXt = dWt + n(Xt)dLt, in planar lip domains, where W = {Wt, t ≥ 0 } is a Brownian motion, n is the inward pointing unit normal vector, and L = {Lt, t ≥ 0} is a local time on the boundary which satisfies some additional regularity conditions. Counterexamples are given for some Lipschitz (but not lip) three dimensional domains.

源语言英语
页(从-至)197-235
页数39
期刊Annales de l'institut Henri Poincare (B) Probability and Statistics
41
2
DOI
出版状态已出版 - 3月 2005
已对外发布

指纹

探究 'Uniqueness for reflecting Brownian motion in lip domains' 的科研主题。它们共同构成独一无二的指纹。

引用此