Uniform resolvent estimates for Schrödinger operator with an inverse-square potential

Haruya Mizutani, Junyong Zhang*, Jiqiang Zheng

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

9 引用 (Scopus)

摘要

We study the uniform resolvent estimates for Schrödinger operator with a Hardy-type singular potential. Let LV=−Δ+V(x) where Δ is the usual Laplacian on Rn and V(x)=V0(θ)r−2 where r=|x|,θ=x/|x| and V0(θ)∈C1(Sn−1) is a real function such that the operator −Δθ+V0(θ)+(n−2)2/4 is a strictly positive operator on L2(Sn−1). We prove some new uniform weighted resolvent estimates and also obtain some uniform Sobolev estimates associated with the operator LV.

源语言英语
文章编号108350
期刊Journal of Functional Analysis
278
4
DOI
出版状态已出版 - 1 3月 2020

指纹

探究 'Uniform resolvent estimates for Schrödinger operator with an inverse-square potential' 的科研主题。它们共同构成独一无二的指纹。

引用此