TY - JOUR
T1 - Understanding the phase formation kinetics of nano-crystalline kesterite deposited on mesoscopic scaffolds
T2 - Via in situ multi-wavelength Raman-monitored annealing
AU - Wang, Zhuoran
AU - Elouatik, Samir
AU - Demopoulos, George P.
N1 - Publisher Copyright:
© 2016 the Owner Societies.
PY - 2016
Y1 - 2016
N2 - Kesterite, a highly promising photo-absorbing crystalline form of Cu2ZnSnS4 (CZTS), has been prepared via various routes. However, the lack of in-depth understanding of the dynamic phase formation process of kesterite leads to difficulties in optimizing its annealing conditions, hence its light harvesting performance. In this paper, in situ Raman monitored-annealing is applied to study the phase formation kinetics of nano-crystalline kesterite from a precursor deposited on a TiO2 mesoscopic scaffold. By performing in situ Raman annealing under different experimental conditions and wavelengths, several facts have been discovered: kesterite crystallization starts at as low as 170 °C, but after short time annealing at 300 °C followed by cooling, the initially formed kesterite is found to decompose. Annealing at 400 °C or higher is proven to be sufficient for stabilizing the kesterite phase. Annealing at the higher temperature of 500 °C is necessary though to promote a complete reaction and thus eliminate the parasitic copper tin sulfide (CTS) impurity intermediates identified at lower annealing temperatures. More importantly, the real-time temperature dependence of Raman peak intensity enhancement, shift and broadening for CZTS is established experimentally at 500 °C for 1 h, providing a valuable reference in future CZTS research. This work demonstrates the significance of using in situ Raman spectroscopy in elucidating the kesterite phase formation kinetics, a critical step towards full crystal phase control - a prerequisite for developing fully functional CZTS-based optoelectronic devices.
AB - Kesterite, a highly promising photo-absorbing crystalline form of Cu2ZnSnS4 (CZTS), has been prepared via various routes. However, the lack of in-depth understanding of the dynamic phase formation process of kesterite leads to difficulties in optimizing its annealing conditions, hence its light harvesting performance. In this paper, in situ Raman monitored-annealing is applied to study the phase formation kinetics of nano-crystalline kesterite from a precursor deposited on a TiO2 mesoscopic scaffold. By performing in situ Raman annealing under different experimental conditions and wavelengths, several facts have been discovered: kesterite crystallization starts at as low as 170 °C, but after short time annealing at 300 °C followed by cooling, the initially formed kesterite is found to decompose. Annealing at 400 °C or higher is proven to be sufficient for stabilizing the kesterite phase. Annealing at the higher temperature of 500 °C is necessary though to promote a complete reaction and thus eliminate the parasitic copper tin sulfide (CTS) impurity intermediates identified at lower annealing temperatures. More importantly, the real-time temperature dependence of Raman peak intensity enhancement, shift and broadening for CZTS is established experimentally at 500 °C for 1 h, providing a valuable reference in future CZTS research. This work demonstrates the significance of using in situ Raman spectroscopy in elucidating the kesterite phase formation kinetics, a critical step towards full crystal phase control - a prerequisite for developing fully functional CZTS-based optoelectronic devices.
UR - http://www.scopus.com/inward/record.url?scp=84994251844&partnerID=8YFLogxK
U2 - 10.1039/c6cp05759d
DO - 10.1039/c6cp05759d
M3 - Article
AN - SCOPUS:84994251844
SN - 1463-9076
VL - 18
SP - 29435
EP - 29446
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 42
ER -