Understanding PPA-completeness

Xiaotie Deng*, Jack R. Edmonds, Zhe Feng, Zhengyang Liu, Qi Qi, Zeying Xu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

4 引用 (Scopus)

摘要

We show that computation of the SPERNER problem is PPA-complete on the Möbius band under proper boundary conditions, settling a long term open problem. Further, the same computational complexity results extend to other discrete fixed points on the Möbius band, such as the Brouwer fixed point problem, the DPZP fixed point problem and a simple version of the Tucker problem, as well as the projective plane and the Klein bottle. We expect it opens up a new route for further studies on the related combinatorial structures.

源语言英语
页(从-至)146-168
页数23
期刊Journal of Computer and System Sciences
115
DOI
出版状态已出版 - 2月 2021
已对外发布

指纹

探究 'Understanding PPA-completeness' 的科研主题。它们共同构成独一无二的指纹。

引用此