Two-Sided Heat Kernel Estimates for Symmetric Diffusion Processes with Jumps: Recent Results

Zhen Qing Chen, Panki Kim, Takashi Kumagai*, Jian Wang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This article gives an overview of some recent progress in the study of sharp two-sided estimates for the transition density of a large class of Markov processes having both diffusive and jumping components in metric measure spaces. We summarize some of the main results obtained recently in [11, 18] and provide several examples. We also discuss new ideas of the proof for the off-diagonal upper bounds of transition densities which are based on a generalized Davies’ method developed in [10].

源语言英语
主期刊名Dirichlet Forms and Related Topics - In Honor of Masatoshi Fukushima’s Beiju, IWDFRT 2022
编辑Zhen-Qing Chen, Masayoshi Takeda, Toshihiro Uemura
出版商Springer
63-83
页数21
ISBN(印刷版)9789811946714
DOI
出版状态已出版 - 2022
已对外发布
活动International Conference on Dirichlet Forms and Related Topics, IWDFRT 2022 - Osaka, 日本
期限: 22 8月 202226 8月 2022

出版系列

姓名Springer Proceedings in Mathematics and Statistics
394
ISSN(印刷版)2194-1009
ISSN(电子版)2194-1017

会议

会议International Conference on Dirichlet Forms and Related Topics, IWDFRT 2022
国家/地区日本
Osaka
时期22/08/2226/08/22

指纹

探究 'Two-Sided Heat Kernel Estimates for Symmetric Diffusion Processes with Jumps: Recent Results' 的科研主题。它们共同构成独一无二的指纹。

引用此