摘要
Let k≥3 be an odd integer and let n be a sufficiently large integer. We prove that the maximum number of edges in an n-vertex k-uniform hypergraph containing no 2-regular subgraphs is (n−1k−1)+⌊[Formula presented]⌋, and the equality holds if and only if H is a full k-star with center v together with a maximal matching omitting v. This verifies a conjecture of Mubayi and Verstraëte.
源语言 | 英语 |
---|---|
页(从-至) | 175-191 |
页数 | 17 |
期刊 | Journal of Combinatorial Theory. Series B |
卷 | 128 |
DOI | |
出版状态 | 已出版 - 1月 2018 |
已对外发布 | 是 |
指纹
探究 'Two-regular subgraphs of odd-uniform hypergraphs' 的科研主题。它们共同构成独一无二的指纹。引用此
Han, J., & Kim, J. (2018). Two-regular subgraphs of odd-uniform hypergraphs. Journal of Combinatorial Theory. Series B, 128, 175-191. https://doi.org/10.1016/j.jctb.2017.08.009