T-based fibril-reinforced poroviscoelastic constitutive relation of human articular cartilage using inverse finite element technology

Chao Wan, Liang Ge, Richard B. Souza, Simon Y. Tang, Tamara Alliston, Zhixiu Hao, Xiaojuan Li*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

9 引用 (Scopus)

摘要

Background: Mapping of T relaxation time is a quantitative magnetic resonance (MR) method and is frequently used for analyzing microstructural and compositional changes in cartilage tissues. However, there is still a lack of study investigating the link between T relaxation time and a feasible constitutive relation of cartilage which can be used to model complicated mechanical behaviors of cartilage accurately and properly. Methods: Three-dimensional finite element (FE) models of ten in vitro human tibial cartilage samples were reconstructed such that each element was assigned by material-level parameters, which were determined by a corresponding T value from MR maps. A T-based fibril-reinforced poroviscoelastic (FRPE) constitutive relation for human cartilage was developed through an inverse FE optimization technique between the experimental and simulated indentations. Results: A two-parameter exponential relationship was obtained between the T and the volume fraction of the hydrated solid matrix in the T-based FRPE constitutive relation. Compared with the common FRPE constitutive relation (i.e., without T), the T-based FRPE constitutive relation indicated similar indentation depth results but revealed some different local changes of the stress distribution in cartilages. Conclusions: Our results suggested that the T-based FRPE constitutive relation may improve the detection of changes in the heterogeneous, anisotropic, and nonlinear mechanical properties of human cartilage tissues associated with joint pathologies such as osteoarthritis (OA). Incorporating T relaxation time will provide a more precise assessment of human cartilage based on the individual in vivo MR quantification.

源语言英语
页(从-至)359-370
页数12
期刊Quantitative Imaging in Medicine and Surgery
9
3
DOI
出版状态已出版 - 2019
已对外发布

指纹

探究 'T-based fibril-reinforced poroviscoelastic constitutive relation of human articular cartilage using inverse finite element technology' 的科研主题。它们共同构成独一无二的指纹。

引用此