Transmucosal Delivery of Self-Assembling Photosensitizer-Nitazoxanide Nanocomplexes with Fluorinated Chitosan for Instillation-Based Photodynamic Therapy of Orthotopic Bladder Tumors

Shupeng Wang, Shaohua Jin, Guangzhi Li, Ming Xu, Dashi Deng, Zhisheng Xiao, Haiyan Sun, Shaohua Zhang, Enpu Zhang, Lejing Xie, Guo Li, Yizhi Dai, Zhuang Liu, Qinghai Shu*, Song Wu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

14 引用 (Scopus)

摘要

Theoretically, on account of improved local bioavailability of photosensitizers and attenuated systemic phototoxicity, intravesical instillation-based photodynamic therapy (PDT) for bladder cancer (BCa) would demonstrate significant advantages in comparison with the intravenous route. Actually, the low transmucosal efficiency, hypoxia regulation deficiency, as well as the biosafety risks of intravesical drug agents all have greatly limited the clinical development of instillation-based PDT for BCa. Herein, based on our recent findings on bladder intravesical vectors and photodynamic treatment, we explore and find that the conventional antiparasitic agent nitazoxanide (NTZ) by mixing with chlorine e6 (Ce6) conjugated human serum albumin (HSA), HSA-Ce6, is capable of forming self-assembled HSA-Ce6/NTZ nanoparticles (NPs). Then, the HSA-Ce6/NTZ complexes further fabricate with fluorinated chitosan (FCS), the synthesized transmucosal carrier, to form a biocompatible nanoscale system HSA-Ce6/NTZ/FCS NPs, which exhibit remarkably improved transmucosal delivery and uptake capacities compared with HSA-Ce6/NTZ alone or non-fluorinated HSA-Ce6/NTZ/CS NPs. Meanwhile, due to the metabolic regulation of tumor cells by NTZ, the tumor hypoxia could be efficaciously ameliorated to further favor PDT. This work represents a new photosensitizer nanomedicine formulation for the perfection of PDT performance through the modulation of tumor hypoxia by clinically approved agents. Thus, intravesical instillation of HSA-Ce6/NTZ/FCS NPs with favorable biocompatibility, followed by cystoscope-mediated PDT, could achieve a dramatically improved therapeutic effect to ablate orthotopic bladder tumors.

源语言英语
页(从-至)1485-1495
页数11
期刊ACS Biomaterials Science and Engineering
7
4
DOI
出版状态已出版 - 12 4月 2021

指纹

探究 'Transmucosal Delivery of Self-Assembling Photosensitizer-Nitazoxanide Nanocomplexes with Fluorinated Chitosan for Instillation-Based Photodynamic Therapy of Orthotopic Bladder Tumors' 的科研主题。它们共同构成独一无二的指纹。

引用此