TY - GEN
T1 - Transmit-Receive Beampattern Optimization for Polarization-Subarray-Based Frequency Diverse Array Radar
AU - Gong, Shiqi
AU - Ma, Shaodan
AU - Wei, Xing
AU - Xing, Chengwen
AU - Yang, Guanghua
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/8/24
Y1 - 2018/8/24
N2 - In this paper, we consider a radar system with a subarray-based frequency diverse array (FDA) as the transmitting array, which consists of two FDA subarrays with different frequency increments to achieve single maximum beam response for any target. In order to distinguish the desired signal and multiple interferences with close spatial directions in most scenarios, a novel polarization sensitive FDA (PSFDA) is proposed as the receiving array to suppress interference and further improve the signal to interference-plus-noise ratio (SINR) for accurate target detection. Joint transmit-receive beampattern optimization is particularly investigated here. Specifically, in our work, we aim at maximizing the output SINR of the proposed polarization-subarray-based FDA radar by jointly optimizing the FDA transmit beamforming, the PSFDA spatial pointings and the PSFDA receive beamforming. To tackle the nonconvexity of the formulated SINR maximization problem, an alternating optimization algorithm is proposed to decompose the original problem into three convex subproblems, which can all be efficiently solved by the interior point method. Numerical experiments verify the superior output SINR performance of the proposed iterative algorithm.
AB - In this paper, we consider a radar system with a subarray-based frequency diverse array (FDA) as the transmitting array, which consists of two FDA subarrays with different frequency increments to achieve single maximum beam response for any target. In order to distinguish the desired signal and multiple interferences with close spatial directions in most scenarios, a novel polarization sensitive FDA (PSFDA) is proposed as the receiving array to suppress interference and further improve the signal to interference-plus-noise ratio (SINR) for accurate target detection. Joint transmit-receive beampattern optimization is particularly investigated here. Specifically, in our work, we aim at maximizing the output SINR of the proposed polarization-subarray-based FDA radar by jointly optimizing the FDA transmit beamforming, the PSFDA spatial pointings and the PSFDA receive beamforming. To tackle the nonconvexity of the formulated SINR maximization problem, an alternating optimization algorithm is proposed to decompose the original problem into three convex subproblems, which can all be efficiently solved by the interior point method. Numerical experiments verify the superior output SINR performance of the proposed iterative algorithm.
UR - http://www.scopus.com/inward/record.url?scp=85053448283&partnerID=8YFLogxK
U2 - 10.1109/SPAWC.2018.8445893
DO - 10.1109/SPAWC.2018.8445893
M3 - Conference contribution
AN - SCOPUS:85053448283
SN - 9781538635124
T3 - IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC
BT - 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 19th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2018
Y2 - 25 June 2018 through 28 June 2018
ER -