TY - JOUR
T1 - Transient modeling and analysis of a stepped-configuration thermoelectric generator considering non-uniform temperature distribution
AU - Zhu, Xingzhuang
AU - Zuo, Zhengxing
AU - Wang, Wei
AU - Zhang, Min
AU - Yin, Qian
AU - Liu, Ruiheng
AU - Jia, Boru
N1 - Publisher Copyright:
© 2025 Elsevier Ltd
PY - 2025/4/1
Y1 - 2025/4/1
N2 - Aiming at the low output power(P) and conversion efficiency(η) of a conventional thermoelectric generator(TEG), a stepped-configuration TEG integrating half-Heusler-based(HH) and bismuth-telluride-based(BT) thermoelectric modules(TEM) is proposed in this paper. A transient model considering the temperature drop along the gas flow direction is developed to predict the performance of the TEG and proved to be reliable. The effects of time, spatial location, input temperature(Ta,0) and flow rate(ṁa) on the thermoelectric performance of the stepped-configuration TEG are investigated. The results show that the stabilization time of the thermoelectric properties of the high-temperature TEG with HH is shorter than that of the low-temperature TEG with BT, and there is inertia in the transfer of key thermal properties. The thermoelectric properties of the TEM decrease gradually along the gas flow direction and the spatial variation is related to the ratio of the area of the high and low temperature TEG (RHL). P and η of the stepped-configuration TEG increase with RHL by 8.6% and 15.5%, respectively. P increases with Ta,0 and ṁa and η varies with Ta,0 and ṁa in relation to RHL. The maximum P and η of the stepped-configuration TEG are 276.6 W and 5.90%, respectively, and the corresponding Ta,0 and ṁa are 1573 K and 8 g/s, respectively, which are 32.3% higher than that of the conventional TEG. ṁa is a decisive factor affecting the distribution of energy flow in the stepped-configuration TEG, which is more important than Ta,0 and RHL. This scheme can effectively improve η of TEG and provide useful guidance for the study of TEG.
AB - Aiming at the low output power(P) and conversion efficiency(η) of a conventional thermoelectric generator(TEG), a stepped-configuration TEG integrating half-Heusler-based(HH) and bismuth-telluride-based(BT) thermoelectric modules(TEM) is proposed in this paper. A transient model considering the temperature drop along the gas flow direction is developed to predict the performance of the TEG and proved to be reliable. The effects of time, spatial location, input temperature(Ta,0) and flow rate(ṁa) on the thermoelectric performance of the stepped-configuration TEG are investigated. The results show that the stabilization time of the thermoelectric properties of the high-temperature TEG with HH is shorter than that of the low-temperature TEG with BT, and there is inertia in the transfer of key thermal properties. The thermoelectric properties of the TEM decrease gradually along the gas flow direction and the spatial variation is related to the ratio of the area of the high and low temperature TEG (RHL). P and η of the stepped-configuration TEG increase with RHL by 8.6% and 15.5%, respectively. P increases with Ta,0 and ṁa and η varies with Ta,0 and ṁa in relation to RHL. The maximum P and η of the stepped-configuration TEG are 276.6 W and 5.90%, respectively, and the corresponding Ta,0 and ṁa are 1573 K and 8 g/s, respectively, which are 32.3% higher than that of the conventional TEG. ṁa is a decisive factor affecting the distribution of energy flow in the stepped-configuration TEG, which is more important than Ta,0 and RHL. This scheme can effectively improve η of TEG and provide useful guidance for the study of TEG.
KW - Conversion efficiency
KW - Energy flow distribution
KW - Output power
KW - Stepped-configuration thermoelectric generator
KW - Thermoelectric module
UR - http://www.scopus.com/inward/record.url?scp=85215626018&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2025.125360
DO - 10.1016/j.apenergy.2025.125360
M3 - Article
AN - SCOPUS:85215626018
SN - 0306-2619
VL - 383
JO - Applied Energy
JF - Applied Energy
M1 - 125360
ER -