Transformer and CNN Hybrid Network for Super-Resolution Semantic Segmentation of Remote Sensing Imagery

Yutong Liu, Kun Gao*, Hong Wang, Junwei Wang, Xiaodian Zhang, Pengyu Wang, Shuzhong Li

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Super-resolution semantic segmentation (SRSS) based on Convolutional neural network (CNN) cannot establish long-range dependencies due to limited receptive field, which limits the SRSS to obtain accurate high-resolution (HR) segmentation results from the low-resolution (LR) input images. In this paper, we design a Transformer and CNN hybrid SRSS network that consists of two branches: Transformer and CNN hybrid SRSS branch and super-resolution guided branch. In the Transformer and CNN hybrid SRSS branch, Transformer extracts global context information from the feature map of the CNN, while skip connection is used to retain the local context information extracted from the CNN and combines both features to further improve the segmentation performance. In addition, the super-resolution guided branch is designed to supplement rich structure information and guide the semantic segmentation (SS). We test the proposed method on the ISPRS Vaihingen benchmark data set, and our network is superior to other state-of-the-art methods.

源语言英语
主期刊名IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
6940-6943
页数4
ISBN(电子版)9798350320107
DOI
出版状态已出版 - 2023
已对外发布
活动2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, 美国
期限: 16 7月 202321 7月 2023

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2023-July

会议

会议2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023
国家/地区美国
Pasadena
时期16/07/2321/07/23

指纹

探究 'Transformer and CNN Hybrid Network for Super-Resolution Semantic Segmentation of Remote Sensing Imagery' 的科研主题。它们共同构成独一无二的指纹。

引用此