TY - JOUR
T1 - Transform-Limited Photons from a Coherent Tin-Vacancy Spin in Diamond
AU - Trusheim, Matthew E.
AU - Pingault, Benjamin
AU - Wan, Noel H.
AU - Gündoǧan, Mustafa
AU - De Santis, Lorenzo
AU - Debroux, Romain
AU - Gangloff, Dorian
AU - Purser, Carola
AU - Chen, Kevin C.
AU - Walsh, Michael
AU - Rose, Joshua J.
AU - Becker, Jonas N.
AU - Lienhard, Benjamin
AU - Bersin, Eric
AU - Paradeisanos, Ioannis
AU - Wang, Gang
AU - Lyzwa, Dominika
AU - Montblanch, Alejandro R.P.
AU - Malladi, Girish
AU - Bakhru, Hassaram
AU - Ferrari, Andrea C.
AU - Walmsley, Ian A.
AU - Atatüre, Mete
AU - Englund, Dirk
N1 - Publisher Copyright:
© 2020 American Physical Society.
PY - 2020/1/14
Y1 - 2020/1/14
N2 - Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T1>10 ms, and the coherence time, T2∗ reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.
AB - Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T1>10 ms, and the coherence time, T2∗ reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.
UR - http://www.scopus.com/inward/record.url?scp=85078445673&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.124.023602
DO - 10.1103/PhysRevLett.124.023602
M3 - Article
C2 - 32004012
AN - SCOPUS:85078445673
SN - 0031-9007
VL - 124
JO - Physical Review Letters
JF - Physical Review Letters
IS - 2
M1 - 023602
ER -