TY - GEN
T1 - Transferable Semantic Augmentation for Domain Adaptation
AU - Li, Shuang
AU - Xie, Mixue
AU - Gong, Kaixiong
AU - Liu, Chi Harold
AU - Wang, Yulin
AU - Li, Wei
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - Domain adaptation has been widely explored by transferring the knowledge from a label-rich source domain to a related but unlabeled target domain. Most existing domain adaptation algorithms attend to adapting feature representations across two domains with the guidance of a shared source-supervised classifier. However, such classifier limits the generalization ability towards unlabeled target recognition. To remedy this, we propose a Transferable Semantic Augmentation (TSA) approach to enhance the classifier adaptation ability through implicitly generating source features towards target semantics. Specifically, TSA is inspired by the fact that deep feature transformation towards a certain direction can be represented as meaningful semantic altering in the original input space. Thus, source features can be augmented to effectively equip with target semantics to train a more transferable classifier. To achieve this, for each class, we first use the inter-domain feature mean difference and target intra-class feature covariance to construct a multivariate normal distribution. Then we augment source features with random directions sampled from the distribution class-wisely. Interestingly, such source augmentation is implicitly implemented through an expected transferable cross-entropy loss over the augmented source distribution, where an upper bound of the expected loss is derived and minimized, introducing negligible computational overhead. As a light-weight and general technique, TSA can be easily plugged into various domain adaptation methods, bringing remarkable improvements. Comprehensive experiments on cross-domain benchmarks validate the efficacy of TSA.
AB - Domain adaptation has been widely explored by transferring the knowledge from a label-rich source domain to a related but unlabeled target domain. Most existing domain adaptation algorithms attend to adapting feature representations across two domains with the guidance of a shared source-supervised classifier. However, such classifier limits the generalization ability towards unlabeled target recognition. To remedy this, we propose a Transferable Semantic Augmentation (TSA) approach to enhance the classifier adaptation ability through implicitly generating source features towards target semantics. Specifically, TSA is inspired by the fact that deep feature transformation towards a certain direction can be represented as meaningful semantic altering in the original input space. Thus, source features can be augmented to effectively equip with target semantics to train a more transferable classifier. To achieve this, for each class, we first use the inter-domain feature mean difference and target intra-class feature covariance to construct a multivariate normal distribution. Then we augment source features with random directions sampled from the distribution class-wisely. Interestingly, such source augmentation is implicitly implemented through an expected transferable cross-entropy loss over the augmented source distribution, where an upper bound of the expected loss is derived and minimized, introducing negligible computational overhead. As a light-weight and general technique, TSA can be easily plugged into various domain adaptation methods, bringing remarkable improvements. Comprehensive experiments on cross-domain benchmarks validate the efficacy of TSA.
UR - http://www.scopus.com/inward/record.url?scp=85120451934&partnerID=8YFLogxK
U2 - 10.1109/CVPR46437.2021.01135
DO - 10.1109/CVPR46437.2021.01135
M3 - Conference contribution
AN - SCOPUS:85120451934
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 11511
EP - 11520
BT - Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PB - IEEE Computer Society
T2 - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Y2 - 19 June 2021 through 25 June 2021
ER -