Transferable Semantic Augmentation for Domain Adaptation

Shuang Li, Mixue Xie, Kaixiong Gong, Chi Harold Liu*, Yulin Wang, Wei Li

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

98 引用 (Scopus)

摘要

Domain adaptation has been widely explored by transferring the knowledge from a label-rich source domain to a related but unlabeled target domain. Most existing domain adaptation algorithms attend to adapting feature representations across two domains with the guidance of a shared source-supervised classifier. However, such classifier limits the generalization ability towards unlabeled target recognition. To remedy this, we propose a Transferable Semantic Augmentation (TSA) approach to enhance the classifier adaptation ability through implicitly generating source features towards target semantics. Specifically, TSA is inspired by the fact that deep feature transformation towards a certain direction can be represented as meaningful semantic altering in the original input space. Thus, source features can be augmented to effectively equip with target semantics to train a more transferable classifier. To achieve this, for each class, we first use the inter-domain feature mean difference and target intra-class feature covariance to construct a multivariate normal distribution. Then we augment source features with random directions sampled from the distribution class-wisely. Interestingly, such source augmentation is implicitly implemented through an expected transferable cross-entropy loss over the augmented source distribution, where an upper bound of the expected loss is derived and minimized, introducing negligible computational overhead. As a light-weight and general technique, TSA can be easily plugged into various domain adaptation methods, bringing remarkable improvements. Comprehensive experiments on cross-domain benchmarks validate the efficacy of TSA.

源语言英语
主期刊名Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
出版商IEEE Computer Society
11511-11520
页数10
ISBN(电子版)9781665445092
DOI
出版状态已出版 - 2021
活动2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, 美国
期限: 19 6月 202125 6月 2021

出版系列

姓名Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN(印刷版)1063-6919

会议

会议2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
国家/地区美国
Virtual, Online
时期19/06/2125/06/21

指纹

探究 'Transferable Semantic Augmentation for Domain Adaptation' 的科研主题。它们共同构成独一无二的指纹。

引用此