TY - JOUR
T1 - Trajectory exploration within asynchronous binary asteroid systems using refined Lagrangian coherent structures
AU - Shang, Haibin
AU - Wu, Xiaoyu
AU - Cui, Pingyuan
N1 - Publisher Copyright:
© 2016, Springer Science+Business Media Dordrecht.
PY - 2017/2/1
Y1 - 2017/2/1
N2 - Ground observations have found that asynchronous systems constitute most of the population of the near-Earth binary asteroids. This paper concerns the trajectory of a particle in the asynchronous system which is systematically described using periodic ellipsoidal and spherical body models. Due to the non-autonomous characteristics of the asynchronous system, Lagrangian coherent structures (LCS) are employed to identify the various dynamical behaviors. To enhance the accuracy of LCS, a robust LCS finding algorithm is developed incorporating hierarchical grid refinement, one-dimensional search and variational theory verification. In this way, the intricate dynamical transport boundaries are detected efficiently. These boundaries indicate that a total of 15 types of trajectories exist near asynchronous binary asteroids. According to their Kepler energy variations, these trajectories can be grouped into four basic categories, i.e., transitory, escape, impact and flyby trajectories. Furthermore, the influence of the ellipsoid’s spin period on the dynamical behavior is discussed in the context of the change of dynamical regions. We found that the transitory and impact motions occur easily in the synchronous-like binary systems, in which the rotation period of the ellipsoid is nearly equal to that of the mutual orbit. Meanwhile, the results confirm a positive correlation between the spinning rate of the ellipsoid and the probability of the escape and flyby trajectories. The LCS also reveal a marked increase in trajectory diversity after a larger initial energy is selected.
AB - Ground observations have found that asynchronous systems constitute most of the population of the near-Earth binary asteroids. This paper concerns the trajectory of a particle in the asynchronous system which is systematically described using periodic ellipsoidal and spherical body models. Due to the non-autonomous characteristics of the asynchronous system, Lagrangian coherent structures (LCS) are employed to identify the various dynamical behaviors. To enhance the accuracy of LCS, a robust LCS finding algorithm is developed incorporating hierarchical grid refinement, one-dimensional search and variational theory verification. In this way, the intricate dynamical transport boundaries are detected efficiently. These boundaries indicate that a total of 15 types of trajectories exist near asynchronous binary asteroids. According to their Kepler energy variations, these trajectories can be grouped into four basic categories, i.e., transitory, escape, impact and flyby trajectories. Furthermore, the influence of the ellipsoid’s spin period on the dynamical behavior is discussed in the context of the change of dynamical regions. We found that the transitory and impact motions occur easily in the synchronous-like binary systems, in which the rotation period of the ellipsoid is nearly equal to that of the mutual orbit. Meanwhile, the results confirm a positive correlation between the spinning rate of the ellipsoid and the probability of the escape and flyby trajectories. The LCS also reveal a marked increase in trajectory diversity after a larger initial energy is selected.
KW - Asynchronous binary systems
KW - Binary asteroids
KW - Dynamical behavior
KW - Escape
KW - Flyby
KW - Impact
KW - Lagrangian coherent structure
KW - Trajectory categories
UR - http://www.scopus.com/inward/record.url?scp=84986308353&partnerID=8YFLogxK
U2 - 10.1007/s10569-016-9723-y
DO - 10.1007/s10569-016-9723-y
M3 - Article
AN - SCOPUS:84986308353
SN - 0923-2958
VL - 127
SP - 185
EP - 210
JO - Celestial Mechanics and Dynamical Astronomy
JF - Celestial Mechanics and Dynamical Astronomy
IS - 2
ER -