Training Optimization for Hybrid MIMO Communication Systems

Chengwen Xing*, Dekang Liu, Shiqi Gong, Wei Xu, Sheng Chen, Lajos Hanzo

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)

摘要

Channel estimation is conceived for hybrid multiple-input multiple-output (MIMO) communication systems. Both mean square error minimization and mutual information maximization are used as our performance metrics and a pair of low-complexity channel estimation schemes are proposed. In each scheme, the training sequence and the analog matrices of the transmitter and receiver are jointly optimized. We commence by designing the optimal training sequences and analog matrices for the first scheme. Upon relying on the resultant optimal structures, the training optimization problems are substantially simplified and the nonconvexity resulting from the analog matrices can be overcome. In the second scheme, the channel estimation and data transmission share the same analog matrices, which beneficially reduces the overhead of optimizing the associated analog matrices. Therefore, a composite channel matrix is estimated instead of the true channel matrix. By exploiting the statistical optimization framework advocated, the analog matrices can be designed independently of the training sequence. Based on the resultant analog matrices, the training sequence can then be efficiently designed according to diverse channel statistics and performance metrics. Finally, we conclude by quantifying the performance benefits of the proposed estimation schemes.

源语言英语
文章编号9095239
页(从-至)5473-5487
页数15
期刊IEEE Transactions on Wireless Communications
19
8
DOI
出版状态已出版 - 8月 2020

指纹

探究 'Training Optimization for Hybrid MIMO Communication Systems' 的科研主题。它们共同构成独一无二的指纹。

引用此