TY - GEN
T1 - Towards Versatile Embodied Navigation
AU - Wang, Hanqing
AU - Liang, Wei
AU - Van Gool, Luc
AU - Wang, Wenguan
N1 - Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - With the emergence of varied visual navigation tasks (e.g., image-/object-/audio-goal and vision-language navigation) that specify the target in different ways, the community has made appealing advances in training specialized agents capable of handling individual navigation tasks well. Given plenty of embodied navigation tasks and task-specific solutions, we address a more fundamental question: can we learn a single powerful agent that masters not one but multiple navigation tasks concurrently? First, we propose VXN, a large-scale 3D dataset that instantiates four classic navigation tasks in standardized, continuous, and audiovisual-rich environments. Second, we propose VIENNA, a versatile embodied navigation agent that simultaneously learns to perform the four navigation tasks with one model. Building upon a full-attentive architecture, VIENNA formulates various navigation tasks as a unified, parse-and-query procedure: the target description, augmented with four task embeddings, is comprehensively interpreted into a set of diversified goal vectors, which are refined as the navigation progresses, and used as queries to retrieve supportive context from episodic history for decision making. This enables the reuse of knowledge across navigation tasks with varying input domains/modalities. We empirically demonstrate that, compared with learning each visual navigation task individually, our multitask agent achieves comparable or even better performance with reduced complexity.
AB - With the emergence of varied visual navigation tasks (e.g., image-/object-/audio-goal and vision-language navigation) that specify the target in different ways, the community has made appealing advances in training specialized agents capable of handling individual navigation tasks well. Given plenty of embodied navigation tasks and task-specific solutions, we address a more fundamental question: can we learn a single powerful agent that masters not one but multiple navigation tasks concurrently? First, we propose VXN, a large-scale 3D dataset that instantiates four classic navigation tasks in standardized, continuous, and audiovisual-rich environments. Second, we propose VIENNA, a versatile embodied navigation agent that simultaneously learns to perform the four navigation tasks with one model. Building upon a full-attentive architecture, VIENNA formulates various navigation tasks as a unified, parse-and-query procedure: the target description, augmented with four task embeddings, is comprehensively interpreted into a set of diversified goal vectors, which are refined as the navigation progresses, and used as queries to retrieve supportive context from episodic history for decision making. This enables the reuse of knowledge across navigation tasks with varying input domains/modalities. We empirically demonstrate that, compared with learning each visual navigation task individually, our multitask agent achieves comparable or even better performance with reduced complexity.
UR - http://www.scopus.com/inward/record.url?scp=85150745935&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85150745935
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
Y2 - 28 November 2022 through 9 December 2022
ER -